Analisis regresi linier berganda adalah hubungan secara linear antara dua atau lebih variabel independen (X1, X2,….Xn)
dengan variabel dependen (Y). Analisis ini untuk mengetahui arah
hubungan antara variabel independen dengan variabel dependen apakah
masing-masing variabel independen berhubungan positif atau negatif dan
untuk memprediksi nilai dari variabel dependen apabila nilai variabel
independen mengalami kenaikan atau penurunan. Data yang digunakan
biasanya berskala interval atau rasio.
Persamaan regresi linear berganda sebagai berikut:
Y’ = a + b1X1+ b2X2+…..+ bnXn
Keterangan:
Y’ = Variabel dependen (nilai yang diprediksikan)
X1 dan X2 = Variabel independen
a = Konstanta (nilai Y’ apabila X1, X2…..Xn = 0)
b = Koefisien regresi (nilai peningkatan ataupun penurunan)
Contoh kasus:
Kita
mengambil contoh kasus pada uji normalitas, yaitu sebagai berikut:
Seorang mahasiswa bernama Bambang melakukan penelitian tentang
faktor-faktor yang mempengaruhi harga saham pada perusahaan di BEJ.
Bambang dalam penelitiannya ingin mengetahui hubungan antara rasio
keuangan PER dan ROI terhadap harga saham. Dengan ini Bambang
menganalisis dengan bantuan program SPSS dengan alat analisis regresi
linear berganda. Dari uraian di atas maka didapat variabel dependen (Y)
adalah harga saham, sedangkan variabel independen (X1 dan X2) adalah PER dan ROI.
Data-data yang di dapat berupa data rasio dan ditabulasikan sebagai berikut:
Tabel. Tabulasi Data (Data Fiktif)
Tahun
|
Harga Saham (Rp)
|
PER (%)
|
ROI (%)
|
1990
|
8300
|
4.90
|
6.47
|
1991
|
7500
|
3.28
|
3.14
|
1992
|
8950
|
5.05
|
5.00
|
1993
|
8250
|
4.00
|
4.75
|
1994
|
9000
|
5.97
|
6.23
|
1995
|
8750
|
4.24
|
6.03
|
1996
|
10000
|
8.00
|
8.75
|
1997
|
8200
|
7.45
|
7.72
|
1998
|
8300
|
7.47
|
8.00
|
1999
|
10900
|
12.68
|
10.40
|
2000
|
12800
|
14.45
|
12.42
|
2001
|
9450
|
10.50
|
8.62
|
2002
|
13000
|
17.24
|
12.07
|
2003
|
8000
|
15.56
|
5.83
|
2004
|
6500
|
10.85
|
5.20
|
2005
|
9000
|
16.56
|
8.53
|
2006
|
7600
|
13.24
|
7.37
|
2007
|
10200
|
16.98
|
9.38
|
Langkah-langkah pada program SPSS
Ø Masuk program SPSS
Ø Klik variable view pada SPSS data editor
Ø Pada kolom Name ketik y, kolom Name pada baris kedua ketik x1, kemudian untuk baris kedua ketik x2.
Ø Pada
kolom Label, untuk kolom pada baris pertama ketik Harga Saham, untuk
kolom pada baris kedua ketik PER, kemudian pada baris ketiga ketik ROI.
Ø Untuk kolom-kolom lainnya boleh dihiraukan (isian default)
Ø Buka data view pada SPSS data editor, maka didapat kolom variabel y, x1, dan x2.
Ø Ketikkan data sesuai dengan variabelnya
Ø Klik Analyze - Regression - Linear
Ø Klik
variabel Harga Saham dan masukkan ke kotak Dependent, kemudian klik
variabel PER dan ROI kemudian masukkan ke kotak Independent.
Ø Klik Statistics, klik Casewise diagnostics, klik All cases. Klik Continue
Ø Klik OK, maka hasil output yang didapat pada kolom Coefficients dan Casewise diagnostics adalah sebagai berikut:
Tabel. Hasil Analisis Regresi Linear Berganda
Persamaan regresinya sebagai berikut:
Y’ = a + b1X1+ b2X2
Y’ = 4662,491 + (-74,482)X1 + 692,107X2
Y’ = 4662,491 - 74,482X1 + 692,107X2
Keterangan:
Y’ = Harga saham yang diprediksi (Rp)
a = konstanta
b1,b2 = koefisien regresi
X1 = PER (%)
X2 = ROI (%)
Persamaan regresi di atas dapat dijelaskan sebagai berikut:
- Konstanta sebesar 4662,491; artinya jika PER (X1) dan ROI (X2) nilainya adalah 0, maka harga saham (Y’) nilainya adalah Rp.4662,491.
- Koefisien regresi variabel PER (X1)
sebesar -74,482; artinya jika variabel independen lain nilainya tetap
dan PER mengalami kenaikan 1%, maka harga saham (Y’) akan mengalami
penurunan sebesar Rp.74,482. Koefisien bernilai negatif artinya terjadi
hubungan negatif antara PER dengan harga saham, semakin naik PER maka
semakin turun harga saham.
- Koefisien regresi variabel ROI (X2)
sebesar 692,107; artinya jika variabel independen lain nilainya tetap
dan ROI mengalami kenaikan 1%, maka harga saham (Y’) akan mengalami
peningkatan sebesar Rp.692,107. Koefisien bernilai positif artinya
terjadi hubungan positif antara ROI dengan harga saham, semakin naik ROI
maka semakin meningkat harga saham.
Nilai harga saham yang diprediksi (Y’) dapat dilihat pada tabel Casewise Diagnostics (kolom Predicted Value). Sedangkan Residual (unstandardized residual) adalah selisih antara harga saham dengan Predicted Value, dan Std. Residual (standardized residual)
adalah nilai residual yang telah terstandarisasi (nilai semakin
mendekati 0 maka model regresi semakin baik dalam melakukan prediksi,
sebaliknya semakin menjauhi 0 atau lebih dari 1 atau -1 maka semakin
tidak baik model regresi dalam melakukan prediksi).
Tidak ada komentar:
Posting Komentar